Matemáticas → Anál. Matemático → Función → Secante
Definición de Función Secante:
La Función Secante es aquella función trigonométrica que tiene la siguiente fórmula:
f(x) = sec x
Recordemos que la secante de un ángulo α (sec α) es la razón entre la hipotenusa y el cateto contiguo (o adyacente) al ángulo. Es la razón recíproca al coseno:
Representación Gráfica de la Función Secante:
La función secante tiene la siguiente representación gráfica:
La función secante tiene las siguientes propiedades:
- Es una función continua en todo x excepto en los siguientes puntos: π·k + π/2 (donde k es un número entero)
- Toma los siguientes valores: (-∞, -1] ∪ [1,
+ ∞) - Tiene un periodo de 2π radianes, es decir, se repite cada 2π radianes
- Es una función par, es decir: sec -x = sec x
- No corta al eje horizontal (eje x) en ningún punto
Otros Tipos de Funciones:
- Función Acotada: función f tal que para cualquier valor de x, -m ≤ f(x) ≤ m
- Función Afín: f(x) = mx + n (donde m y n ≠ 0)
- Función Algebraica: expresiones algebraicas (suma, resta, multiplicación...) de números y variables
- Función Compleja: f: S → C, donde C es el conjunto de los números complejos
- Función Continua: función cuya curva está formada por un trazo continuo sin saltos
- Función Constante: f(x) = m, donde m es constante
- Función Creciente: función f tal que f(x1) ≤ f(x2) para cualquier par de puntos x1 < x2
- Función Cuadrática: f(x) = ax2 + bx + c
- Función Cúbica: f(x) = ax3 + bx2 + cx + d
- Función Decreciente: función f tal que f(x1) ≥ f(x2) para cualquier par de puntos x1 > x2
- Función Discontinua: función cuya curva está formada por un trazo con saltos o roto en su trazo
- Función Escalar: f: Rn → R
- Función Explícita: y = f(x)
- Función Exponencial: f(x) = ex
- Función Identidad: f(x) = x
- Función Impar: f(-x) = -f(x)
- Función Implícita: y ≠ f(x)
- Función Inversa: f-1(x)
- Función Lineal: f(x) = mx
- Función Logarítmica: f(x) = loga x
- Función Par: f(x) = f(-x)
- Función Parte Entera: f(x) = E(x)
- Función Periódica: f(x) = f(x + T)
- Función Polinómica: f(x) = anxn + an−1xn−1 + ... + a2x2 + a1x + a0
- Función Potencial: f(x) = xa
- Función Primitiva: F(x)
- Función Racional: f(x) = P(x) / Q(x) donde P y Q son dos polinomios
- Función Real: f: R → R
- Función Trigonométrica: incluye en su fórmula alguna razón trigonométrica (seno, coseno, tangente...)
- Función Valor Absoluto: f(x) = |P(x)| donde P es un polinomio
- Función Vectorial: f: Rn → Rm
No hay comentarios :
Publicar un comentario