Ejemplos de Matriz Conjugada

Matemáticas Álgebra MatrizConjugada

Definición de Matriz Conjugada:

Una Matriz Conjugada es una matriz compleja (contiene números complejos) a la cual se ha cambiado de signo la parte compleja de cada elemento:
Sea Amxn = (aij) una matriz compleja es la matriz conjugada si =(
"Sea A una matriz compleja, entonces A es conjugada si cada elemento de A es conjugado.
Para tener claro el concepto de número conjugado veamos algunos ejemplos:
  • 2 + 3i → su conjugado es 2 - 3i
  • -2 + 3i → su conjugado es -2 - 3i
  • 1 - 2i → su conjugado es 1 + 2i
  • 1 + 2i → su conjugado es 1 - 2i

Ejemplos de Matriz Conjugada:

Veamos algunos ejemplos de matrices conjugadas:


Propiedades de la Matriz Conjugada:

Veamos algunas de las propiedades de las matrices conjugadas:
  • Sea A una matriz conjugada, entonces la conjugada de la conjugada es la misma matriz

Ver También:
  • Matriz Antisimétrica: matriz que es igual a su traspuesta cambiada de signo (A = -AT)
  • Matriz Columna: matriz que está formada solamente por una columna
  • Matriz Cuadrada: matriz que tiene el mismo número de filas que de columnas
  • Matriz Diagonal: matriz con todos los elementos que no estén en la diagonal principal iguales a 0
  • Matriz Escalar: matriz con todos los elementos de la diagonal principal del mismo valor 
  • Matriz Fila: matriz que está formada solamente por una fila
  • Matriz Idempotente: matriz que multiplicada por si misma da como resultado la misma matriz
  • Matriz Identidad: matriz cuadrada con valores 1 en la diagonal principal y el resto de valores igual a 0
  • Matriz Inversa: matriz que multiplicada por la matriz origen da la matriz dentidad: A x  A−1 = I
  • Matriz Involutiva: matriz que multiplicada por si misma da como resultado la matriz unidad o identidad
  • Matriz Nula: es aquella matriz en la que todos sus valores son igual a 0 
  • Matriz Ortogonal: matriz que multiplicada por su traspuesta resulta la matriz identidad (A · AT = I)
  • Matriz Rectangular: matriz que tiene el distinto número de filas que de columnas
  • Matriz Regular: es aquella matriz cuadrada que tiene inversa
  • Matriz Simétrica: matriz cuadrada que es igual a su traspuesta (A = AT)
  • Matriz Singular: es aquella matriz que no posee inversa 
  • Matriz Traspuesta: matriz que resulta de intercambiar los valores de las filas por los de las columnas
  • Matriz Triangular Superior: matriz con todos los elementos por debajo de la diagonal principal igual a 0
  • Matriz Triangular Inferior: matriz con todos los elementos por encima de la diagonal principal igual a 0
versión 1 (19/03/2017)

No hay comentarios :

Publicar un comentario