Factorial de un Número:
En Combinatoria, se define el factorial de un número natural (1, 2, 3, 4...) de la siguiente manera:
Ejemplos de Factorial de un Número:
¿Eres capaz de encontrar más ejemplos? Te animamos a compartirlos abajo en los comentarios así como a realizar las consultas que desees.
Ver También:
n! = n · (n - 1) · (n - 2) · (n - 3) · ... · 1
donde n es un número naturalEl cálculo del factorial de un número es una operación muy importante dentro del campo de la combinatoria, ya que las variaciones, permutaciones y combinaciones tienen en sus fórmulas números factoriales:
- Variaciones: solo se toman algunos elementos sin repetir y teniendo en cuenta el orden. Fórmula:
Permutaciones: se toman todos los elementos sin repetir y teniendo en cuenta el orden
- Combinaciones: solo se toman algunos elementos sin repetir y sin tener en cuenta el orden
Ejemplos de Factorial de un Número:
A continuación se muestran varios ejemplos de cálculo de factoriales:
- Factorial de 4:
4! = 4 · 3 · 2 · 1 = 24
- Factorial de 5:
5! = 5 · 4 · 3 · 2 · 1 = 120
- Factorial de 3:
3! = 3 · 2 · 1 = 6
Ver También:
- Variaciones con Repetición
- Permutaciones con Repetición
- Permutaciones Circulares
- Combinaciones con Repetición
- Número Combinatorio
- Número Factorial
- Binomio de Newton
Otros Conceptos Estadísticos:
versión 1 (12/06/2017)
- Probabilidad: frecuencia esperada de un fenómeno aleatorio basándose en la experiencia
- Población: son los elementos que se analizan para realizar cálculos de probabilidad
- Muestra: son los casos de una población que se estudian en un estudio probabilístico
- Muestreo: técnicas de obtención de muestras en una población
- Media: valor promedio que toman los sucesos de un fenómeno aleatorio
- Moda (Mo) : es el valor que se da con mayor frecuencia en una muestra de datos
- Mediana (Me): valor que deja la mitad de los sucesos ordenados a cada lado
- Desviación Estándar o Típica (σ): medida del grado de dispersión de los resultados obtenidos
- Varianza (σ2): se calcula elevando al cuadrado la desviación típica
- Percentiles (Pn): valor del elemento que es mayor que un porcentaje de la muestra
- Deciles (Dn): valor del elemento que es mayor a un porcentaje (tomado por grupos de 10%)
- Cuartiles (Qn): valor del elemento que es mayor a un porcentaje (tomado por grupos de 25%)
- Quintiles (Qn): valor del elemento que es mayor a un porcentaje (tomado por grupos de 20%)
- Variable Aleatoria: función que asigna un valor numérico a cada elemento de una muestra aleatoria
- Función de Probabilidad: función (P) que asigna a cada valor (xi) una probabilidad (pi)
- Función de Distribución: función que indica la probabilidad de obtener un valor ≤ a un suceso
- Esperanza Matemática: valor medio que se puede esperar de un fenómeno aleatorio
- Distribución binomial: es una distribución de sucesos cuya probabilidad es fija
- Distribución normal o de Gauss: distribución que toma valores continuos no discretos
- ...
No hay comentarios :
Publicar un comentario